Introduction

?

Thanks

Evolution of the microstructural surface characteristics during annealing

Edgar Gomes¹, Kim Verbeken¹, Jai Gautam² and Leo Kestens^{1,2}

¹Ghent University, Department of Materials Science and Engineering ²Delft University of Technology, Materials Science and Engineering Department

4th International Conference on Recrystallization and Grain Growth - 6th July 2010

Department o

E. Gomes (DMSE - UGent)

ReX & GG IV

Introduction	Experimental Procedure	Discussion	?	Thanks
00000	000	00000000	0	

Outline

Introduction

Electrical Steel Surface Annealing Treatment

Experimental Procedure

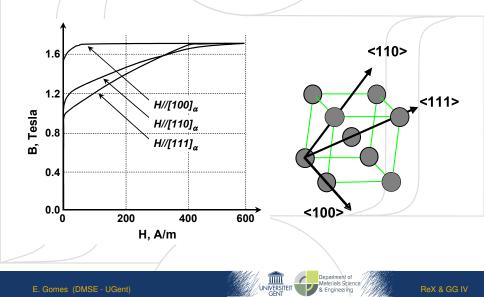
Sample preparation

Discussion

Texture Analysis Grain Morphology Analysis Grain Boundary Analysis Proposed Mechanism

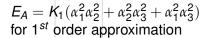
E. Gomes (DMSE - UGent)

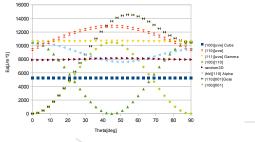
ReX & GG IV


Department o

Fooineering

Introduction •••••	Experimental Procedure	Discussion 00000000	? 0	Thanks
Electrical Steel				


Electrical Steel


Magnetic Anisotropy of bcc iron lattice

Introduction O●○○○	Experimental Procedure	Discussion 00000000	? 0	Thanks
Electrical Steel				
Texture in e	lectrical steel			

Magnetic properties of electrical steels depend on crystallographic texture due the magnetic anisotropy of iron crystal.

Department o

Introduction	
00000	

Experimental Procedu

Discussion	?
00000000	0

Denartment of

Surface Annealing Treatment

Routes to obtain cube fibre

Still not possible to obtain the desired cube fibre in a industrial process, but several routes have been applied at lab scale:

- Cross-rolling
- Directional solidification
- Surface annealing treatment

. . .

Introduction	Experimental Procedure	Discussion 000000000	? 0	Thanks
Surface Annealing	Treatment			

Surface annealing treatment

- Hashimoto *et al.* investigated the $\alpha \rightarrow \gamma \rightarrow \alpha$ phase transformation texture at the surface of an ultra low carbon cold rolled steel sheet and reported that a <100> // ND texture was formed rather than the usual <111> //ND texture.
- Aspeden *et al.* reported that an annealing treatment for an ultra low carbon steel in the austenitic temperature region followed by a slow cooling resulted in a stronger <100>//ND texture.
- In all of these works it was assumed that the resulting surface texture was produced due to the lowest metal/vapour interface energy in the {001} fibre.

Introduction

Experimental Procedu

Discussion	?	Th
00000000	0	

Surface Annealing Treatment

 $\alpha \rightarrow \gamma \rightarrow \alpha$ transformations

- $\alpha \rightarrow \gamma \rightarrow \alpha$ seems to be need the in surface annealing treatment.
- Young-Kurdjumov-Sachs (YKS) is the most commonly cited orientation relationship model.
- $\{111\}_{\gamma} \parallel \{011\}_{\alpha} \text{ and } [111]_{\gamma} \parallel [011]_{\alpha} \rightarrow 24 \times 90^{\circ} \langle 112 \rangle$
- In double transformation each component will result in 576 (24×24) product orientations.

Introduction	Experimental Procedure	Discussion	?	Thanks
00000	000	00000000	0	

Department o

Engineering

ReX & GG IV

VERSITEIT

GENT

Outline

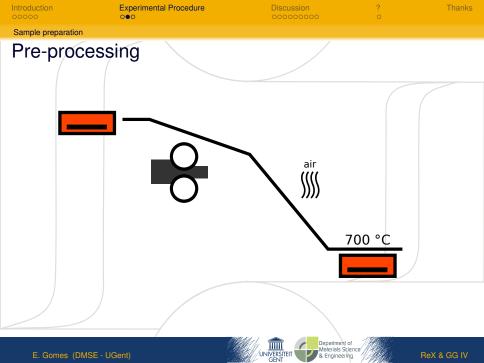
Introduction

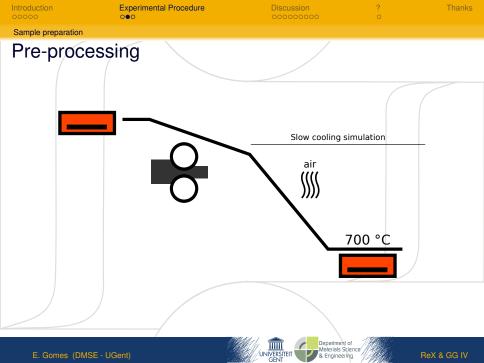
Electrical Steel Surface Annealing Treatment

Experimental Procedure Sample preparation

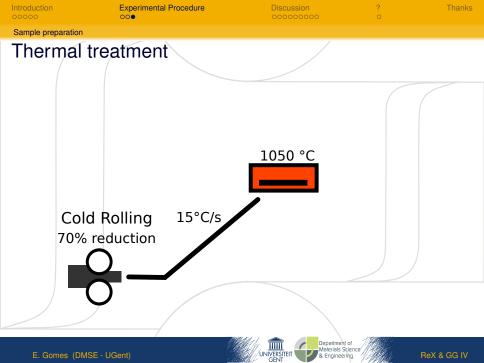
Discussion

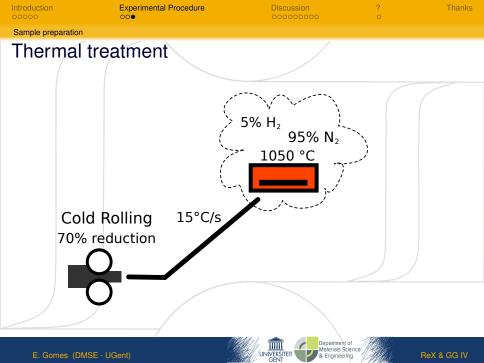
Texture Analysis Grain Morphology Analysis Grain Boundary Analysis Proposed Mechanism

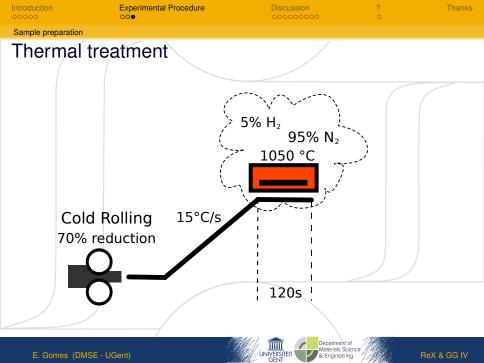

Introduction	Experimental Procedure	Discussion	? 0	Thanks
Sample preparation	n			
Chemic	al composition			
	ltra low carbon steel with uminium.	additions of mang	ganese and	k

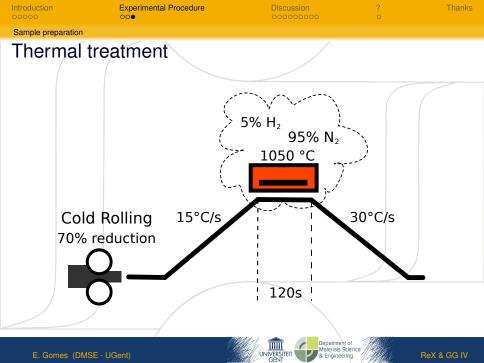

-	Sample Name	C [wt%]	Mn [wt%]	Si [wt%]	AI [wt%]
	Α	0.002	1.28	0.22	0.29
	/)				
		_/			
E. Go	omes (DMSE - UGent)	, ,	UNIVERSITEIT	Department of Materials Stience & Engineering	ReX 8

Introduction	Experimental Procedure	Discussion	?	Thanks
Sample preparation				
Pre-proces	sing			
] —			
	-			
			_	
E. Gomes (DMSE -	UGent)	UNIVERSITEIT GENT	of ence	ReX & GG IV









Introduction	Experimental Procedure	Discussion	? 0	Thanks
Sample preparation	n			
Therma	I treatment			
Co	old Rolling			
709	% reduction			
	0			
	σ			
E. Gomes (I	DMSE - UGent)	UNIVERSITEIT	of ence	ReX & GG IV

Introduction	Experimental Procedure	Discussion	?	Thanks
00000	000	00000000	0	

Outline

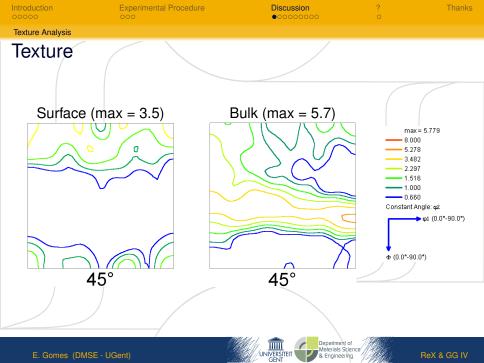
Introduction

Electrical Steel Surface Annealing Treatment

Experimental Procedure

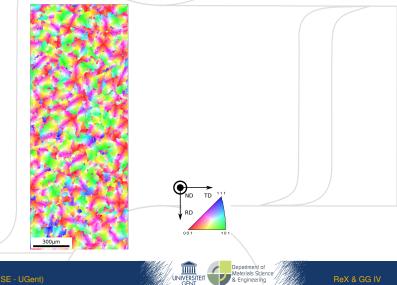
Sample preparation

Discussion


Texture Analysis Grain Morphology Analysis Grain Boundary Analysis Proposed Mechanism

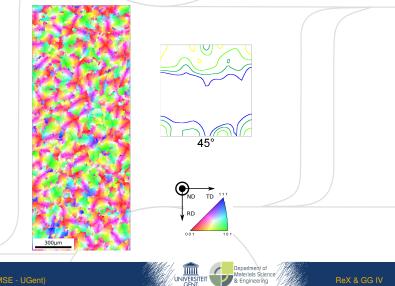
Department o

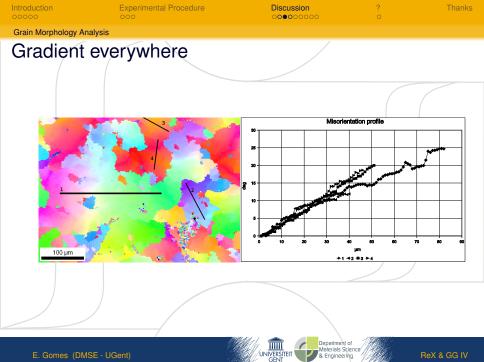
Fooineering


VIVERSITEI

GENT

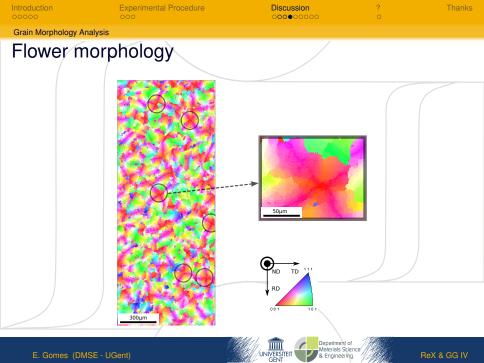
Grain Morphology A	nalveic			
00000	000	0000000	0	
Introduction	Experimental Procedure	Discussion	?	Thanks

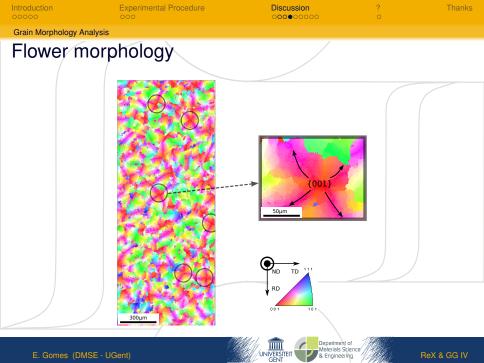

IPF map on ND surface section



	neturie			
00000	000	0000000	0	
Introduction	Experimental Procedure	Discussion	?	Thanks

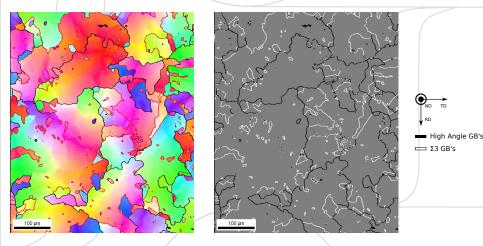
Grain Morphology Analysis


IPF map on ND surface section



Introduction	Experimental Procedure	Discussion	? 0	Thanks
Grain Boundary Analysi	S			
Cube and	$\langle 110 \rangle \parallel ND$ areas			
		Direction Min Max Fac -0.0110011 0° 10° 10° 0° -0.0110011 0° 10° 0° 0° -0.0110001 0° 10° 0° 0° -0.0110001 0° 10° 0° 0° -0.01 101 10° 0° 0° -0.01 101 10° 0° 0° -0.01 101 10° 0° 0° -0.01 101 10° 0° 0° -0.01 101 10° 0° 0° -0.01 101 10° 0° 0° -0.01 10° 10° 0° 0° -0.01 10° 10° 0° 0° -0.01 10° 10° 0° 0° -0.01 10° 10° 0° 0° -0.01 10° 10° 0° 0° -0.01 10°	200 0.240 094 0.094 r <u>Length</u> 19.52 cm	<u>Length</u> 10.7715 cm

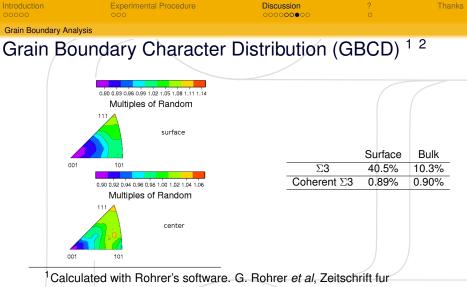
500 μm


Sall

ReX & GG IV

Department of Materials Science & Engineering

Introduction	Experimental Procedure	Discussion	? 0	Thanks
Grain Boundary Ana	lysis			

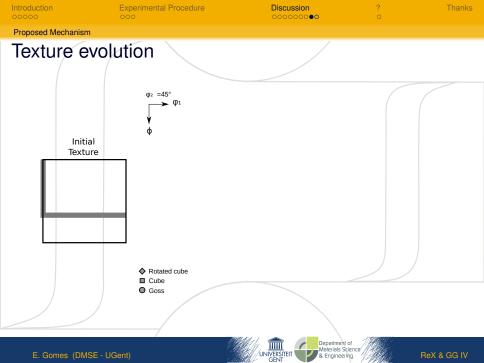

Σ 3 grain boundaries

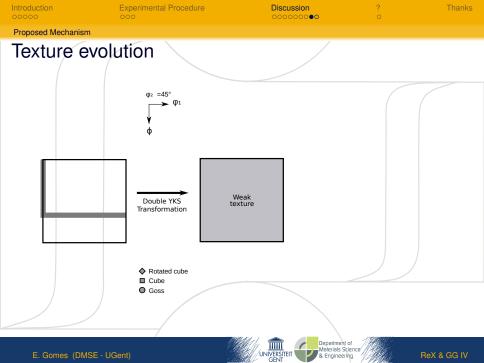
E. Gomes (DMSE - UGent)

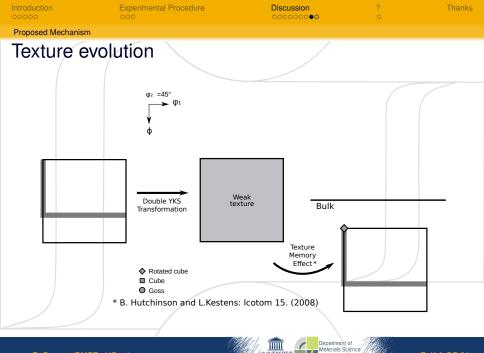
Department of

GENI

Metallkunde (2004) ²The input data was not achieved, as it requires at least 50,000 segments


for typical cubic symmetry situations.


Department of


Engineering

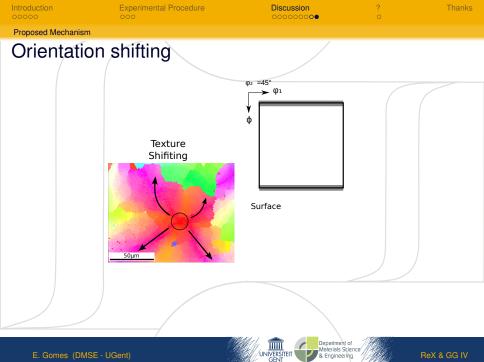
UNIVERSITEIT

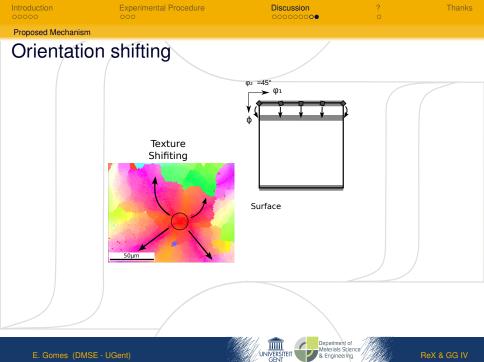
GENT

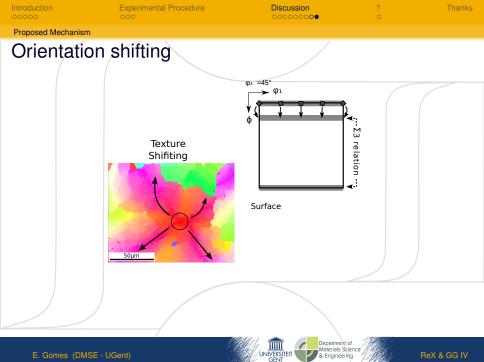
& Engineering

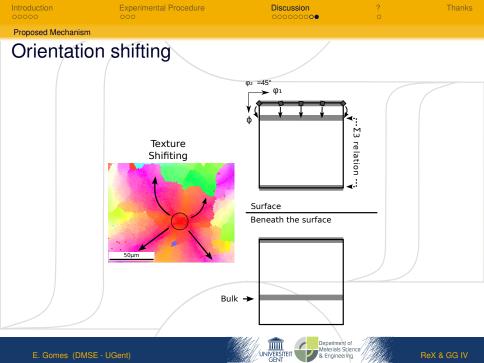
E. Gomes (DMSE - UGent)

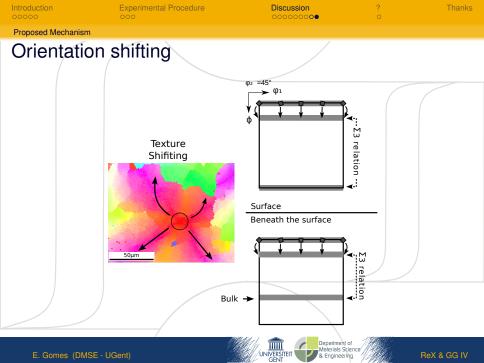
ReX & GG IV


& Engineering


E. Gomes (DMSE - UGent)


ReX & GG IV


Introduction	Experimental Procedure	Discussion	?	Thanks
Proposed Mechanism				
Orientatio	n shifting			
	50µm			
E. Gomes (DMS	E - UGent)	UNIVERSITEIT UNIVERSITEIT	of lence	ReX & GG IV


Introduction	Experimental Procedure	Discussion ○○○○○○○●	?	Thanks
Proposed Mechanisr	n			
Orientatio	on shifting			
	Texture Shifiting			
	50µm			
E. Gomes (DN	ISE - UGent)	UNIVERSITEIT	of lence	ReX & GG IV

Introduction	Experimental Procedure	Discussion	? 0	Thanks

Outline

Introduction

Electrical Steel Surface Annealing Treatment

Experimental Procedure

Sample preparation

Discussion

Texture Analysis Grain Morphology Analysis Grain Boundary Analysis Proposed Mechanism

?

??

ReX & GG IV

Department o

GENT

ReX & GG IV

??

Experimental Procedure

Discussion

How do cube grains know that 5-10° misorientation will make them met at Σ 3 boundaries with {110}//ND grains ???

Department of

Introduction

Experimental Procedure

Discussion 000000000

Thanks

Thank for your attention !!!

"Joe Magarac, was a man made of steel. He was born in an iron ore mine and raised in a furnace... He made railroad rails by squeezing molten steel between his fingers."

Edgar.Gomes@UGent.be

ReX & GG IV

Department o